
	

Virtual Developer Day: Java 2014 – May	
 28th,	
 2014	
 	

10:30	
 AM	
 -­‐	
 2:30	
 PM	
 IST	
 	
 /	
 1:00	
 PM	
 	
 -­‐	
 5:30	
 PM	
 SGT	
 /	
 3:00	
 PM	
 	
 -­‐	
 7:30	
 PM	
 AEDT	

	

Agenda
Time (IST)
 10:15 a.m. Event Platform Opening
 10:30 a.m. Keynote - Java: Present and Future
 Java EE 7 Java SE 8 Java Embedded

11:00 a.m.
Java API for WebSocket

+ Demo
(11.00-11.40)

55 New Features in
Java SE 8

(11.00-12.00)

Coffee with Dessert:

Java SE & ME 8
Embedded and the

Raspberry Pi
(11.00-12.00)

11:40 a.m.

Java API for JSON
Processing

+ Demo
(11.40-12.20)

Things you should
know when

developing JavaFX
applications
(12.00-1.00)

Using Oracle Event
Processing for Oracle

Embedded Java to
Make Big Data

Smaller
(12.00-1.00)

12:20 p.m.
JMS 2.0

(Java Message Service)

12:40 p.m.
JAX-RS 2.0

(Java API for RESTful Web
Services)

1:00 p.m. Break and Dedicated Java Community Lounge Time

1:15 p.m.

Batch API for the Java
Platform
+ Demo

(1.15-2.00)

Lambda
Expressions

Tutorial
(1.15-2.00)

Talking to the Real
World

With the Device Access
API

(1.15-2.00)

2:00 p.m.
Concurrency Utilities for

Java EE
+ Demo

(2.00-2.30)

Up and Running
with NetBeans IDE

(2.30-2.30)

Big Tools for Small
Devices

(2.30-2.30)

2:30 p.m. Event Close

Abstracts

Keynote – Java: Present and Future

With the release of Java EE 7, Java SE 8 and Java ME 8 there have been significant
enhancements in functionality across the Java platform. Java will, however, continue
to evolve to meet the needs of developers across the globe and much of this will be
through community involvement. This session will review the status of the Java
platform as it stands today and look at some ideas for the future of the platform. We'll
also discuss the many different ways developers can be part of the community
shaping the future of Java.	

Java EE 7 Track –
	

Java API for WebSocket + Demo

The Java API for WebSocket (JSR 356) is a wholly new technology for the Java EE
platform. This rapidly adopted network protocol that is a foundational piece of the
HTML5 standard gives Java EE developers the ability to add efficient, asynchronous
bidirectional messaging into their web applications, enabling them to make their web
applications more active and engaging. This session will work through the highlights of
this new Java API in Java EE 7 so that you will see exactly what features it has and
how to integrate it into your Java EE application. The second half of the session will
illustrate the WebSocket API with different demos (annotated and programmatic
based).

Java API for JSON Processing + Demo

JSON is a lightweight data exchange format used increasingly in RESTful Web
services by highly visible Websites (Facebook, Twitter, Amazon, and the like). This
session will show how JSR 353: Java API for JSON Processing can be used to
process JSON. It goes over streaming API to produce/consume JSON, and also object
model API to build a Java object model for JSON. This session will be concluded by
demos to illustrate use of JSON-P API in JAX-RS and other applications (for e.g. to
process Twitter search results).

Java Message Service (JMS) 2.0

This session introduces the new features of JMS 2.0 (JSR 343) and explains how they
improve ease of use and make developers more productive. JMS 2.0 introduces a
completely new "simplified" API which means fewer objects to manage, simpler
methods to call and less code to write. In Java EE, the use of annotations and
dependency injection reduces the amount of code needed still further. Improvements
have also been made to the existing "classic" API to make it simpler and easier to use.
The session also includes a summary of some of the new messaging features which
have been added to tackle real-world issues such as scalability and error handling.

Java API for RESTful Web Services 2.0

JAX-RS is the Java API for building RESTful web services. This session focuses on
the new features introduced in JAX-RS 2.0 (JSR 339) including the client API, filters
and entity interceptors, asynchronous processing and hypermedia. These new
features are centered around providing ease of use and reduced development time for

your applications. Additionally, application portability is greatly increased by minimizing
the need to use proprietary extensions in existing JAX-RS implementations. This
session briefly introduces the new features and shows code snippets of the API for
each one.

Batch API for the Java Platform + Demo

Batch applications: anachronism or enterprise workload? Asynchronous bulk (or long-
running) processing, historically called "batch", has been quietly co-existing along-side
online applications for years. In recent years, more and more of this batch processing
has been written in Java. There has never been an API standard for these applications
- until now! Batch Applications for the Java Platform (JSR 352) ushers in the world's
first Java standard for building batch applications. In this session you will gain a basic
understanding of JSR 352, including its motivation, feature highlights, selected API
overview, job scheduling language introduction, and key use cases. The second part
of the session will demonstrate some key Batch API features such as the checkpoint
contract, property injection, JSL (Job Specification Language), resuming failed job, ...

Concurrency Utilities for Java EE + Demo

Concurrency Utilities for Java EE (JSR 236) is a new addition to Java EE 7 platform. It
provides a simple and standardized mechanism for Java EE application developers to
easily and safely add asynchronous capabilities to their applications. This session
provides an overview of what is provided in this JSR. A demonstration showing how to
use this API and its different executors services (ManagedExecutorService,
ManagedScheduledExecutorService, and ManagedThreadFactory) will conclude the
session.

Java SE Track
55 New Features in Java SE 8

Java SE 8 is the next release of the core Java platform and contains lots of exciting new
features. In addition to the big features like Lambda expressions, extension methods for
interfaces and a new Date and Time API there are plenty of smaller features as well. This
session will rapidly cover fifty-five new features that are scheduled for inclusion in Java SE 8
when it is released early in 2014.

Things you should know when developing JavaFX applications
Developing a JavaFX application in principle is not very different from developing a
Swing application. The things you have to know are related to the new possibilities of
JavaFX like Properties, Bindings and CSS support. Because styling a JavaFX
application is completely different from styling a Swing application this session will
show some tips on how to give your JavaFX application a custom look. In addition it
will be shown how to make use of FXML and SceneBuilder when creating JavaFX
applications. Other interesting things like using additional scenes and stages within
your app and creating custom controls by extending existing controls will be covered.
The session will try to show different concepts that will help you when developing
applications in JavaFX.	

Understanding Lambda Expressions in Java

The big language features for Java SE 8 are lambda expressions (closures) and default
methods (formerly called defender methods or virtual extension methods). Adding lambda

expressions to the language opens up a host of new expressive opportunities for applications
and libraries. You might assume that lambda expressions are simply a more syntactically
compact form of inner classes, but, in fact, the implementation of lambda expressions is
substantially different and builds on the invokedynamic feature added in Java SE 7.

This session will explain the ideas behind lambda expressions, how they will be used in Java
SE 8 and look at some of the details of their implementation

Java and JavaScript: Project Nashorn

The JVM knows how to execute bytecodes, but it doesn’t care where they come from.
Compiling JavaScript to bytecodes has specific challenges in terms of how to optimise
performance, as the JVM was designed for a statically typed language. The Oracle Nashorn
JavaScript project was created to provide high performance execution of JavaScript by the
JVM. This presentation goes through the performance work that has gone on to make
JavaScript-to-bytecode generation for execution on the JVM feasible. It shows that the new
invokedynamic bytecode gets us part of the way there but may not quite be enough. What
other tricks did the Nashorn project use? The presentation also discusses future directions for
increased performance for dynamic languages on the JVM, covering proposed enhancements
to both the JVM itself and to the bytecode compiler.

Streams and Functions for Simpler Concurrency in Java SE 8

Lambda expressions in Java provide a simple and powerful new way to avoid the use
of anonymous inner classes with single abstract method types. On their own,
however, they do not provide the developer with a significant reduction in complexity
for many tasks. Some of the most powerful features being introduced in Java SE 8
are enhancements to the class libraries in the form of java.util.stream and
java.util.function. These essentially introduce functional-like programming constructs
to Java.

This session will look at the new libraries and how they can be used with Lambda
expressions to simplify common coding tasks. We’ll also look at how the use of these
libraries means developers no longer need to worry about writing code that is
inherently serial or parallel. A simple method call change is all it takes to switch
between the two.

Up and Running with NetBeans IDE

Without tools, the new features provided by Java SE 8 and JavaFX 8 would be really
hard to use! For example, wouldn't you like to upgrade all your Java applications to
use Java SE 8 language features, all in one go? A range of code analyzers and
supporting features, such as code completion and code hints, as well as templates,
wizards, and samples are needed so that you can get started quickly and also be
productive once you are familiar with lambda expressions, streams, functions, and the
many great new features in JavaFX, such as 3D support. This session will cover a
wide range of new features right across NetBeans IDE 8 to support the technologies
scheduled for inclusion in Java SE 8 and JavaFX 8.

Java Embedded Track
An Introduction to Embedded Java

We've been talking about the 'Internet of Things' for over ten years. Now that Moore's law has
reduced the cost of including processing and connectivity in everyday devices to a small
fraction of the product's price this is now an economic and technological reality. Just having
the necessary hardware is only half of the equation; application code is the other half.
Developing embedded software is notoriously difficult, requiring high levels of expertise in
low-level languages. Embedded Java makes application development easier, quicker and
cheaper. In addition, the reality of 'write once, run anywhere' and the Java virtual machine
makes deployment of code to multiple heterogeneous platforms simple and straightforward.

This session will look at how embedded Java (in the form of both Java SE Embedded and
Java ME Embeedded) can be used to program devices using everything from microcontrollers
with a few hundred kilobytes of memory to those with as much computing power as a
desktop. Building on this we will look at how Java ME 8 Embedded, Java SE 8, JavaFX and
Java EE can be combined to enable a single language to be used when developing
applications from ‘device to datacentre’.

Coffee With Dessert: Java SE & ME Embedded and the Raspberry Pi

The Raspberry Pi has caused a huge wave of interest amongst developers, providing an ARM
powered single board computer running a full Linux distro off an SD card and all for only $35!

After an introduction to the Raspberry Pi and the ARM architecture this session will look at
how Java can be used on a device like this. Oracle have released an early access preview of
JDK 8 including JavaFX and Java ME 8 Embedded tuned specifically for the Raspberry Pi.
This includes a very useful Device Access API enabling the use of sensors and actuators
easily from Java code using the Raspberry Pi’s external interface. Using these releases we
will show a variety of demonstrations of what the Raspberry Pi is capable of. Prepare to be
amazed at what this tiny board can do.

Unleash the Power of Java ME Embedded 8

The Java language and runtime platform are pervasive in the embedded space, and now with
the forthcoming release of Oracle Java ME Embedded 8 Oracle provides a robust platform for
the rapid explosion of programmable, connected devices to create what we call today:
Internet of things.

Oracle Java ME Embedded is based on the Connected Limited Device Configuration (CLDC),
and is a Java runtime stack optimized for small embedded systems. It provides a robust and
flexible application platform with dedicated embedded functionality for always-on, headless
(no graphics/UI), and connected devices. Oracle Java ME Embedded enables system
designers and developers to create sophisticated small embedded solutions leveraging the
benefits of the Java language, runtime, and ecosystem while meeting tight system resource
targets.

This session will help you learn everything you need to know to get ready to program the next
generation of the "Internet of Things".

Using Oracle Event Processing for Oracle Embedded Java to Make Big
Data Smaller

Oracle Event Processing for Oracle Java Embedded is a solution for building
embedded device applications to filter, correlate and process events in real-time so
that downstream applications, services and event-driven architectures are driven by
true, real-time intelligence.

This session will explain the architecture of the Event Processor and show how it can
be used to reduce the amount of data being fed to a back-end data processing system
by filtering and collating data before it is transmitted. Code for an example system will
be discussed.

Talking to the Real World With the Device Access API

Embedded applications almost always involve the use of specialised hardware
connected to a processing platform. This can take the form of both sensors and
actuators, many of which use standard communications methods like GPIO, I2C and
SPI. Java ME Embedded, which is targeted at small footprint embedded devices,
includes a powerful API for communicating with these types of devices: the Device
Access API.

This session will go through the various interfaces and APIs demonstrating how to
integrate sensors like temperature and light as well as control LEDs and motors using
simple Java code. The session will conclude with a more complex example of a
Concept Board form Gemalto using the Device Access API and cellular technology to
monitor and control a sample system.

Big Tools for Small Devices

The ease and productivity introduced by Java SE Embedded and Java ME Embedded
is supported by a set of tools integrated into NetBeans IDE. For Java SE Embedded
development, features have been added to NetBeans IDE 8 to deploy, run, debug, and
profile Java SE applications on embedded devices, such as Raspberry PI, directly
from the development environment, while simultaneously Java ME Embedded 8
development features are integrated into NetBeans IDE 8. Using NetBeans IDE 8, we
will show development with the Raspberry Pi, as an example of an embedded device.
Tiny boards and other embedded devices are easy and intuitive to develop on with the
tools NetBeans IDE 8 makes available.	
 	

